Lamp heater
     φ0.47(12),φ0.708(18)-40w~
     φ1.18(30),φ1.37(35)-110w~
     φ2.36(60)-450w~
     φ4.72(120)-1kw~
     φ6.29(160)-2.5kw~
     Width 1.18(30) short focal length F=20
     Width 1.37(35) parallel rays Focus=∞
     Width 2.16(55) short focal length F=25
     Width 2.36(60) parallel rays Focus=∞
     Width 2.55(65) long focal length F=∞
     Air-cooling, others
Hot air heater
     100 W to 1.6 kW  S type
     100 W to 1.2 kW  H type
     2 kW to 7kw φ0.86 (22)~
     One-touch connectors
     Ceramic base type
     Ultra-small φ0.15 (4)~
     Large-capacity compact
Peripheral equipment
Knowledge
Drawing specification
 Site map
img
Video-Hot air heating Video-Light heating Kobe/ Information Inquiry Hot air heater characteristics Production process Thermocouple Air heaters Technical calculation software Site map
Hot air heating calculation Air source Air heater service life Hot air temperature distribution Airless energization Withstanding pressure Controller RoHs order Price Power supply Company profile
Non-applicablity certification Heating wire selection Supply air pressure Quality standards Thermal efficiency Silverbrazing for hot air heaters Knowledge of the halogen lamp Recruit

    Funtech-jp.com    



Physical Property of Various Substances (Extract of Heat Data)

“-” indicates data was not available. Data has been collected from chronological scientific tables, physics and chemistry dictionary, the details numerical values may not match depending the reference material.

Solids Heat CapacityCρ Densityρ Melting point Tf Thermal conductivityk
Description of units Energy required to raise 1g to 1°C J Weight per 1 cm³ g Temperature at which solid turns to liquid
Unit°C
S=1cm², L=1cm Thermal energy moving with a temperature difference of 1°C W
Unit W/cm/K
UnitJ/g/K Measuring Temperature°C Unit g/cm3
Aluminum
Titanium
Gold
Silver
Copper
Iron
Carbon (Graphite)
Lead
Nickel
Platinum
Magnesium
0.901
0.52
0.129
0.236
0.385
0.452
0.710
0.129
0.444
0.132
1.021
25
-
25
25
25
25
25
25
25
25
25
2.7
4.51
19.3
10.5
8.93
7.86
2.25
11.34
8.85
21.37
1.74
660.4
1675
1064.4
961.9
1084.5
1535
3500~
327.5
1455
1772
651
2.36
0.52
3.19
4.28
4.03
0.84
1.5
0.36
0.13
0.94
1.57
Brass
Carbon steel (C=0.8)
Stainless steel SUS304
Stainless steel SUS316
Solder
Nickel silver
Gun metal (BronzeSn=10)
0.39
-
0.48
0.47
0.18
0.40
-
0
-
0
0
0
0
-
8.53
7.8
7.93
7.98
-
8.64
8.5
-
-
~1500~
-
200~300
-
-
1.06
0.50
0.15
-
-
-
0.53
Paper
Glass (Pyrex)
Quartz glass
Rubber
Concrete
Sand
Paraffin
Polyethylene
Wood
Porcelain
1.17~1.34
0.70
-
1.1~2.0
~0.84~
~0.8~
~2.9~
~1.8~
~1.3~
~0.8~
0-100
0
-
20-100
25
0
0
0
20
-
0.7~1.1
2.32
2.22
0.91~0.96
2.4
1.4~1.7
0.87~0.94
0.90
0.3~1.3
2.3~2.5
-
-
-
-
-
-
-
-
-
-
0.002
0.011
0.014
0.002
0.01
0.003
0.002
-
0.002
0.015
Liquid Heat CapacityCρ Densityρ Melting point Tf Thermal conductivityk
Description of units Energy required to raise 1g to 1°C J Weight per 1 cm³ g Temperature at which solid turns to liquid
Unit°C
S=1cm², L=1cm Thermal energy moving with a temperature difference of 1°C W
Unit W/cm/K
UnitJ/g/K Measuring Temperature°C Unit g/cm3
Water
Sea water
Turpentine oil
Rapeseed oil
Ethyl alcohol
Gasoline
4.2
3.9
1.8
2.0
3.5
2.2
0-100
17
18
20
25
25
1.0
1.01~1.05
0.87
0.91~0.92
0.789
0.66~0.75
0.0
-1.9~
-
-20~
-114.5
-
0.0056
-
-
-
0.0017
-


Liquid Heat CapacityCρ Densityρ Melting point Tf Thermal conductivityk
Description of units Energy required to raise 1g to 1°C J Weight per 1 cm³ g Temperature at which solid turns to liquid
Unit°C
S=1cm², L=1cm Thermal energy moving with a temperature difference of 1°C W
Unit W/cm/K
UnitJ/g/K Measuring Temperature°C Unit g/cm3
Ammonia
Argon
Carbon-dioxide
Air (dry type)
Oxygen
Watervapor
Hydrogen
Hydrogen
Helium
Nitrogen
2.15
0.52
0.84
1.01
0.92
2.05
14.19
14.78
5.232
1.03
14
15
16
20
16
100
0
400
-180
16
0.722
1.69
1.85
1.2
1.35
0.588
0.090
0.036
-0.179/0°C
0.590
-33.48 -185.9
-78.5
-
-183.0
100.
-252.8
-
-268.9
-195.8
0.00022
0.00016
0.00015
0.00024
0.00025
0.00016
0.00168
-
0.00142
0.00024

* Note that the density data of only gas is “Weight per liter”.

* When heat transfer W takes place by conduction, the heat energy transferred P W can be determined with the following equation with S cm2 as the cross-section and L cm as the length of the flow path, (kis thermal conductivity W/cm/K)

P = kTS/L W * W (Watt) is the same as J/s (Joules/second).

* The above formula is relatively accurate only for solids. The way in which heat is transmitted changes greatly due to various factors such as convection in liquids and gases.It is impossible to obtain accurate results by simple calculation such as electricity.